Plus or minus a little bit, of course. But not plus or minus as much as some people have been claiming in recent years :-)
So, our
paper has now been accepted, and should be published in a week or two. We think it poses a strong challenge to the "consensus" that has emerged in recent years relating to observationally-based estimates of climate sensitivity, both in terms of the methods used, and the value itself. Remember that climate sensitivity is generally defined as the equilibrium globally-averaged surface temperature rise for a doubled concentration of atmospheric CO
2 - so it's a simple benchmark to describe the sensitivity of the global climate to the sort of perturbation we are imposing. Here is what we did...
As you might have noticed, over recent years there have been a number of papers using observational data in an attempt to generate what is sometimes called an "objective" estimate of climate sensitivity. Of course, as you will hopefully realise having read my
previous posts about
Bayesian vs frequentist notions of probability, there isn't such a thing as a truly objective estimate, since in a situation of epistemic uncertainty, observations can only ever update a subjective prior, and never fully replace it. Moreover, subjectivity goes a lot deeper than merely choosing priors over some unknown parameters - in all scientific research, we always have to make all sorts of judgements about how to build models and analyse evidence. But still, we'd all like to have an estimate of climate sensitivity which can be traced more directly to the data, to replace the old IPCC/Charney report estimate of "likely to be between 1.5-4.5C".
A common approach is to use an ignorant prior (generally, although not always, uniform in climate sensitivity) and look at how observations of the recent (say 20th century) warming narrows the distribution. The unfortunate answer is that it doesn't actually narrow it much, mainly because we don't actually know the recent net forcing (suphate aerosols have a highly uncertain but probably cooling effect which offsets the GHG forcing - if the net forcing is low, then sensitivity much be high to explain the observed warming). I've discussed that further
here, and see also the RealClimate posts
here and
here. Our best estimates give a value of around 3C for climate sensitivity, but values in excess of 6C and perhaps even 10C cannot be ruled out. As a result of numerous studies of this nature, it has been frequently written that we cannot rule out a climate sensitivity of 6C or even substantially more, which is widely regarded as an essentially disastrous situation.
There are some other approaches that can be tried. The cooling effect of a volcanic eruption such as Mt Pinatubo in 1992 also provides some evidence about climate sensitivity. If climate sensitivity is very low, we would expect a modest short-term cooling, but if sensitivity is high, a greater cooling is expected, and it should take longer to recover. We can't get a precise value from this method, since this forced cooling isn't much greater than interannual variability in surface temperature.
Wigley et al analysed several recent volcanic eruptions with a simple energy-balance model and found that a value of about 3C looked pretty good in each case, but values as high as about 6C (and as low as 1.5C) could not be completely ruled out.
Yokohata et al got broadly consistent results with two versions of a full AOGCM.
We can also look to the paleoclimate record for evidence from our planet's past climate. During the last ice age, the total radiative forcing was roughly 8Wm
-2 lower than today (mostly due to lower CO2 and large ice sheets, with dust and vegetation changes also contributing). 8Wm
-2 is roughly twice the forcing of doubled CO
2 (although in the opposite direction), so with the global temperature at that time being about 6C cooler than at present, a climate sensitivity of about 3C looks pretty good again. However, again there are significant uncertainties in all of these values I've quoted, and it's also not clear that one value of climate sensitivity will necessarily apply both to doubled CO
2 and to this rather different forcing. In fact model results (such as
our own) show a fair amount of uncertainty in the response to these different scenarios.
There have been some other ideas, based on how well a model reproduces our current climate (say the magnitude of the seasonal cycle) or other quasi-steady climate states with significantly different forcing, such as the
Maunder Minimum. Again, these analyses point towards ~3C as being the best answer, but the uncertainties in these approaches mean that none of these approaches can rule out 6C or thereabouts as an upper limit.
So all these diverse methods generate pdfs for climate sensitivity that peak at about 3C, but which have a long tail reaching to values as high as 6C or beyond at the 95% confidence level (and some are even worse). As a result, it's been widely asserted that we cannot reasonably rule out such a high value.
So, what did we do that was new? People who have read
this post will already have worked out the answer. We made the rather elementary observation that these above estimates are based on essentially independent observational evidence, and therefore can (indeed must) be combined by Bayes' Theorem to generate an overall estimate of climate sensitivity. Just like the engineer and physicist in my little story, an analysis based on a subset of the available data does not actually provide a valid estimate of climate sensitivity. The question that these previous studies are addressing is not
"What do we estimate climate sensitivity to be"
but is instead
"What would we estimate climate sensitivity to be, if we had no information other than that considered by this study."
The answers to these two questions are simply not equivalent at all. In their defence - and I don't want people to think I'm slamming the important early work in this area - at the time of the first estimates, the various distinct strands of evidence had not been examined in anything like so much detail, so arguably the first few results could be considered valid at the time they were generated. However, with more evidence accumulating, this is clearly no longer the case.
When we combined some of the most credible and solidly-grounded (in our opinion) estimates arising from different observational evidence, we found that the resulting posterior pdf was substantially narrower than any of the observationally-based estimates previously presented. It's inevitable that such a narrowing would occur, but we were surprised by how substantial the effect was and how robust it was to uncertainties in the individual constraints. I suppose with hindsight this is obvious but we admit it did rather take us by surprise. As recently as
last summer, I was happily talking about values in the 5-6C region as being plausible, even if the 10C values always seemed pretty silly.
The paper didn't exactly sail through the refereeing process, but has now been seen by a lot of researchers working in this area. Although many of our underlying assumptions are somewhat subjective, our result appears very robust with respect to plausible alternatives (this was rather a surprise to us). No-one has actually suggested that we have made any gross error (well, some people are rather taken aback at a first glance, but they have all come round quickly so far). It's important to realise that we have not just presented another estimate of climate sensitivity, to be considered as an alternative to all the existing ones. We have explained in very simple terms why the more alarming estimates are not valid, and anyone who wants to hang on to those high values is going to have to come up with some very good reasons as to why our argument is invalid, coupled with solid arguments for their alternative view. A few nit-picks over the specific details of our assumptions certainly won't cut it.
As for the upper limit of 4.5C - as should be clear from the paper, I'm not really happy in assigning as high a value as 5% to the probability of exceeding that value. But there's a limit to what we could realistically expect to get past the referees, at least without a lengthy battle. It is, as they say, good enough for Government work :-)