A follow-up to the previous probability post.
Perhaps this will provide a clearer demonstration of the limitations of Nic's method. In his post, he conveniently provided a simple worked example, which in his view demonstrates how well his method works. A big advantage of using his example is that hopefully no-one can argue I've misapplied his method :-) This is Figure 2 from his post:
This example is based on carbon-14 dating, about which I know very little, but hopefully enough to explain what is going on. The x-axis in the above is real age with 0 corresponding to the "present day", which I think is generally defined as 1950 (so papers don't need to be continually reparsed as time passes). The y-axis is "carbon age" which is basically a measure of the C14 content of something under investigation, typically something organic (plant or animal). The basic idea is that the plant or aminal took up C14 as it grew, but this C14 slowly decays so the proportion in the sample declines after death according to the C14 half-life. So in principle you would think that the age (at death) can be determined directly from measurement of the proportion of carbon that is C14. However, the proportion of C14 in the original organism depends on the ambient concentration of C14 which has varied significantly in the past (it's created by cosmic rays and the like), so there's quite a complicated calibration curve. The black line in the above is a simplified and stylised version of what a curve could look like (Nic's post also has a real calibration curve, but this example is clearer to work with).
So in the example above, the red gaussian represents a measurement of radiocarbon which represents a "carbon age" of about 1000y, with some uncertainty. This is mapped via the calibration curve into a real age distribution on the x-axis, and Nic has provided two worked examples using a uniform prior and his favoured Jeffreys prior.
As some of you may recall, I lived in Japan until recently. Quite by chance, my home town of Kamakura was the capital of Japan for a brief period roughly 7-800y ago. Lots of temples date from that time, and there are numerous wooden artefacts which are well-dated to the Kamakura Era (let's assume, carved out of conteporaneous wood, though of course wood is generally a bit older than the date of the tree felling). Let's see what happens when we try to carbon-date some of these artefacts using Nic's method.
Well, one thing that Nic's method will say with certainty is "this is not a Kamakura-era artefact"! The example above is a plausible outcome, with the carbon age of 1000y covering the entire Kamakura era. Nic's posterior (green solid curve) is flatlining along the axis over the range 650-900y, meaning zero probability for this whole range. The obvious reason for this is that his prior (dashed line) is also flatlining here, making it essentially impossible for any evidence, no matter how strong, to overturn the prior presumption that the age is not in this range.
It is important to recognise that the problem here is not with the actual measurement itself. In fact the measurement shown in the figure indicates very high likelihood (in the Bayesian sense) of the Kamakura era. The problem is entirely in Nic's prior, which ruled out this time interval even before the measurement was made - just because he knew that a measurement of carbon age was going to be made!
Nic uses the emotionally appealing terminology of "objective probability" for this method. I don't blame him for this (he didn't invent it) but I do wonder whether many people have been seduced by the language without understanding what it actually does. You can see Richard Tol insisting that the Jeffreys prior is "truly uninformative" in a comment on my previous post, for example. Well, that might be true, but only if you define "uninformative" in a technical sense not equivalent to common english usage. If you then use it in public, including among scientists who are not well versed in this stuff, then people are going to get badly misled. Frame and Allen went down this rabbit hole a few years ago, I'm not sure if they ever came out. It seems to work for many as an anchoring point, when you discuss in detail, they acknowledge that yes, it's not really "uninformative" or "ignorant" really, but then they quickly revert back to this usage, and the caveats somehow get lost.
I propose that it would be better to use the term "automatic" rather than "objective". What Nic is presenting is an automatic way of generating probabilities, though it remains questionable (to put it mildly) whether they are of any value. Nic's method insists that no trace remains of the Kamakura era, and I don't see any point in a probabilistic method that generates such obvious nonsense.